Starting shortly

vait! ActivityInfo

Data modelling for humanitarian and development information management systems

INTRODUCTIONS

Presented by the ActivityInfo Team

All in one information management software for humanitarian and development operations

- Track activities, outcomes
 Beneficiary management
- \bigcirc Work offline/online

POLL

- 1. How would you rate your familiarity in designing databases?
 - a. Beginner, I'm not really sure where to start
 - b. Intermediate, I know a bit but am looking to improve
 - c. Advanced, I already know how to design effective databases

- 2. How long have you been using ActivityInfo for, if at all?
 - a. A few weeks
 - b. A few months
 - c. Over a year
 - d. I haven't used ActivityInfo yet

Agenda

- 1. Introductions and Housekeeping
- 2. How can we design data models?
 - a. What is a data model?
 - b. Why do we need a data model?
 - c. What are the components of the data modelling process?
- 3. Data modelling best practices
 - a. Considering the role of end user experience
 - i. Tips for aligning user experience with database functionality
 - b. Creating data models that facilitate analysis
 - i. The most common data models in humanitarian and development contexts
- 4. Q&A

What is a data model?

A data model is a **visual representation** of a conceptual framework that organizes and defines data elements and shows how they interact with each other.

By mapping out data structures and their relationships in a visual format, it provides a method by which data is stored, organized, and retrieved.

The challenge of humanitarian and development action

Nature of humanitarian and development action

- 1. Complexity of social and natural phenomena
- 2. The complexity of the expected behavior stems from the following characteristics :
 - a. Emergent: It cannot be explained from the behavior of individual components but is said to emerge from the interactions between individual components
 - b. Non-linear: Due to the ways in which interactions between the multiple components of the system accumulate, small changes in the behavior of individual components may result in disproportionate effects on the global state of the system.
 - c. Adaptive: Individual components of the system can change their behavior to adapt to changes in the behavior of other components.

Why do we need the data model?

01	Data organization and integrity	 structure data, thus easier to store, retrieve, and manipulate data integrity by defining rules and constraints 	Accuracy, reliability, consistency, efficiency
02	Security	Who needs to access data and whyPolicy requirements	Data protection
03	Scalability and documentation	 Blueprint on how data can be expanded provide a clear and structured representation of the data, 	Maintenance and improvements
04	Data integration	 Organizations have multiple data sources Define how different systems relate 	Facilitate data consolidation
05	Communication	common language for communication between different stakeholders	Shared understanding
Ci Activ	ityInfo		Leads to

Where a efficient data model leads?

How we can design a data model: An analogy

•

Identify entities and attributes

Dishes on the restaurant's menu. Each dish (entity) has a unique name

And specific ingredients (attributes).

Define relationships

Reduce data duplication

 PERFORM
 PRIX PIXE

 Margin Remainded/Interry Cacketall
 340

 Storing Remainded/Interry Cacketall
 340

 Storing Remainded/Interry Cacketall
 340

 Storing Remainded/Interry Cacketall
 340

 Storing Remainded/Interry Cacketall
 340

 Store Adving Remainded/Interry Cacketall
 340

 Practices Wargeed Macazeella
 340

 Practices Wargeella
 340

 Practices Wargeella
 340

 Practowargeella
 <td

As a chef combines various dishes to create a meal,

The art of organizing your ingredients and utensils efficiently in the kitchen

How we can design a data model: An analogy

Test

Before a new dish is added to the restaurant's menu, it's usually tested and refined.

Document

Evolve

Just like a restaurant cookbook that contains recipes and instructions for each dish

Restaurant menus, may need to evolve over time

The process: Step 1

Understand requirements

Understand the purpose and objectives: Theory of change

- Which is the objective of my intervention?
- What is the pathway of change?

Understand data requirements: MEAL plan

- Which is the indicators that help me monitor and evaluate?
- Which the the way of calculation?
- Which the the data source for the calculation? Which is the format?
- How will I use the information

Gather requirements from stakeholders: Data flow

- Who collects the information?And how often?
- Who access the information?And how often?
- Who analyzes the information? And how often?

🕻 ActivityInfo

Involve: MEAL staff, program staff while considering the experience from the field

The process: Step 1

Project: Provision of social protection services to vulnerable population

The project level MEAL plan lists multiples Means of Verification (MoVs) for the data collection

Challenges ahead in the absence of data model:

- (1) Duplication of data, thus effort, thus cost
- (2) Lack of data accessibility
- (3) Unable to detect data inconsistency
- (4) Unable to integrate with existing systems
- (5) Risk of future reconstruction

PMP DATA COLLECTION MEANS OF ANALYSI OBJECTIVES INF OF INDICATOR NEORMATION PERSON TYPE OF (OMPARISON RESPONDENTS METHOD FREQUENCY GROUPS STRATEGIC OBJECTIVE I TRATEGIC OBJECTIVE 1 INTERMEDIAT RESULT 1.1 INTERMEDIATI RESULT 2.1 OVTPUT OVTPUT KEY ASSUMPTION SUMPTION ASSUMPTION 2

File Ho	ine inert										
ÊX.	Calibri	- 11 - A A	==	<i>.</i>	IP Wre	p Test	Gene	al	÷	R	
Paste N	8 / 1 -	8 - A - A		- <u>+</u>	EMer	ge & Cente	- 5 -	55 2	12 23	Conditio	nal Fr
Clipboard 5	Fo	a.		Abç	renest.		.6	Number			31
42	• 4 ×	1 10 80	nariette								
				0						0	
1 HirstName	Middleinitia	LastName	StreetAdd	ress		City			State	Zipcode	149
2 Bernadett	1 10	weissman	4767 Clair	Street		Wat	D		13	76720	204
3 Edgar	8	khodes	3633 Hill C	NOTE PART	n Road	Chio	0		CA	95920	530
4 Michael	T	Barber	65 Hickory	Heights	Drive	Have	e De Grao		MD	21078	443
5 Olive	D	Obrien	43 Laurel I	974		Ode	558		TX	79762	432
6 Roland	p	Yamaguchi	2091 Walo	efield Str	teet	Phil	idelphia		PA	19103	215
7 Ramiro	A	Bonham	3807 Koot	er Lane		Char	lotte		NC	28210	704
8 3054	1	Caine	998 Tuna 1	treet		Sout	hfield		MI	48075	810
9 Shawna	3	Rhoades	1337 Tyles	Avenue		Fort	Lauderdal	e	FL	33309	305
10 Joyce		Dyer	2910 Oakv	rood Ave	nue	New	York		NY	10014	212
11 Nydia	J	Canty	2933 Wrig	ht Court		Seat	tle		WA	95101	206
12 Timothy	Α.	Johnson	41 Free St	reet.		Hage	rstown		wv	21342	304
13 Annie	L	Francis	1230 Victo	ria Court		Milte	on Mills		ME	03852	207
14 Joseph		Kirk	2031 Harro	on Drive		Hant	over		MO	21076	443
15 Grace	1	Cruz	29 Williso	n Street		Mint	reapolis		MN	55401	763
16 Jackeline	4	Carter	2014 Simo	son Aver	aue .	Harr	sbure		PA	17109	717
17 Lauren	8	Williams	251 Schoo	House I	had	Jack	00		MS	19213	601
18 Christoph	er B	Templeton	1968 Echo	Lane		Kafa	mazoo		ML	45007	265
10 AStehow	0	Staalo	1204 Willes	out Debu		Voot			Int	60001	253
	tbiContacts	(+)									

The process: Step 2

Identify entities							
Definition	Entity: a discrete data object, the basic building block of your database						
What does this mean in practice?	The different data collection forms						
··	·;						

Beneficiaries

GBV follow up form

The process: Step 3

Identify attributes

Definition

What does this mean in practice?

Attribute: a characteristic that describes your entity in some way

The fields (actual questions) inside my data collection forms

Beneficiaries

- Name
- Date of birth
- Sex
- Age
- Family size

ActivityInto

GBV follow up

- Date of follow up
- Who performed the follow up?
- Actions identified

The process: Step 4

Define	relati	ions	hins
	101010		mp o

What does this mean in practice?

How entities are associated amongst them?

How can we describe the relationship between the records of the first table and the second table?

GBV follow up

- Date of follow up
- Name of case worker
- Actions identified
- Session ID

The process: Step 4

The process: Step 5

Reduce data duplication [Normalization]

Definition					
What does this mean in					
practice?					

the process of organizing your data in your database more efficiently, thus eliminating redundant data and improve data integrity Data collections forms and their relationship should follow three main rules

The process: Step 5

First Rule

Each attribute (column) in a table must contain only atomic (indivisible) values. This means that each cell of the table should hold a single, non-repeating value. Attributes should not contain lists, arrays, or nested structures (e.g age:30, contact (type:email, email:x/ type:number, number:y).

Name	GBV follow up dates
Eliza	18/02, 29/10
Maria	23/04,18/02, 29/10

0	Name	Bene ID	Session ID	GBV follow up dates
	Eliza	01	02	18/02
	Eliza	01	04	27/10
	Maria	02	05	29/10
	Maria	02	06	23/04

The process: Step 5 Second Rule All other values must be functionally dependent on the whole primary key Name Bene ID Session ID **GBV** follow Issue? up dates (partial (primary key) Key) Eliza 01 02 18/02 Session ID is the primary key and Beneficiary ID is Eliza 01 04 27/10partial key: Beneficiary name depends on Bene ID and not session ID Maria 02 05 29/10 02 Maria 06 23/04

	The proc	ess: Ste	ep 5						
	Second Rule	·,,		All other values	must be function	onally dependent on	the whole prir	mary key	
×					Name	Bene ID (primary]		
	Name	Bene	Session	GBV follow		key)			
		ID	ID ID	up dates	Eliza	01	ID Bene	Session ID	GBV follow up
	Eliza	01	02	18/02	Maria	02		(primary key)	dates
	Eliza	01	04	27/10		•	01	02	18/02
	Maria	02	05	29/10		\bigotimes	01	04	27/10
	Maria	02	06	23/04			02	05	29/10
C	Activity	nfo					02	06	23/04 23

23

The process: Step 5

 Third Rule
 It should not have any transitive dependencies. A transitive dependency occurs when a non-key attribute depends on another non-key attribute, rather than directly on the primary key.

Name	Bene ID	Session ID	SW ID	GBV follow up dates
Eliza	01	02	001	18/02
Eliza	01	04	001	27/10
Maria	02	05	003	29/10
Maria	02	06	003	23/04

The process: Step 5

 Third Rule
 It should not have any transitive dependencies. A transitive dependency occurs when a non-key attribute depends on another non-key attribute, rather than directly on the primary key.

Name	Bene ID	Session ID	SW ID	GBV follow up dates
Eliza	01	02	001	18/02
Eliza	01	04	001	27/10
Maria	02	05	003	29/10
Maria	02	06	003	23/04

The process: Step 5

 Third Rule
 It should not have any transitive dependencies. A transitive dependency occurs when a non-key attribute depends on another non-key attribute, rather than directly on the primary key.

Name	Bene ID (primary key)	SW ID	Bene ID (primary key)
Eliza	01	001	01
Maria	02	002	02

Bene ID	Session ID (primary key)	GBV follow up dates
01	02	18/02
01	04	27/10
02	05	29/10
02	06	23/04

The process: Step 6

ΞÌ

1 1

::

| | | | | | | |

1.1

1.1

11

Visualize, Test, Document and Evolve

Create a visual representation of your data model which can help you and your team visualize the structure and relationships.

- Test your data model to ensure it meets the defined requirements and constraints.
- Validate that it can handle expected data volumes and access patterns.
- Create comprehensive documentation that describes the data model.
- Good documentation is crucial for team communication and maintenance.

Consider program changes and field staff feedback that may results in maintenance, data model evolution.

Involve: Field staff, leave time for testing and consider actively their feedback. Consider the reports and involve MEAL staff or data analysts

Key Messages

- The complexity of social issues make imperative the need for a clear data model.
- Consider always your starting point. The Theory of change, MEAL plan and the data flow define requirements.
- Create data collection with clear objectives. This will help you comply with the normalization rules.
- Visualize always the data model.
- Involve relevant stakeholders in the design process, testing and documentation.

Glossary

Entity: a discrete data object, the basic building block of your database

Attribute: a characteristic that describes your entity in some way

Relationship: how entities relate to each other

Cardinality: how many on one side of the relationship relate to how many on the other side of the relationship

Key: an attribute or combination of attributes used to uniquely identify an entity

Normalization: the process of organizing your data in your database more efficiently

Data modelling best practices

The evolution of data models

How data model can facilitate analysis?

Network database model

Relational database model

-Organizes data in a tree structure.with a one-to-many relationship between records

-Each parent record has one or more child records.

-Resembles the structure of a file system.

Ci ActivityInfo

-Similar to a hierarchical database but with a many-to-many relationship between records.

-Records can have multiple connections, not just a one-to-many structure.

-Clearly defined entities are responsible for holding, organizing, storing, retrieving, and accessing data

-Clearly defined actions enable applications to manipulate the data and structures of a database.

-Integrity rules govern operations on the data and structures of a database.

82

Common relational models in Humanitarian and Development practice

Protection," "Child Protection," and "Gender-Based Violence (GBV)

Organization: it's organized around individual cases or beneficiaries in a humanitarian context. It includes fields for personal details, assistance provided, location, and case status.

Rationale: In humanitarian development, this data model helps organizations and agencies manage and track assistance and support provided to individuals or communities affected by disasters, conflicts, or other crises. It enables efficient allocation of resources and ensures accountability for aid delivery.

Level 1: Identify the data collection forms

Level 2: define relationships

Level 3: define fields (attributes) and establish constraints

Relational databases are flexible

- Can handle various types of data, making them suitable for a wide range of use cases
- Improve data consistency

Used in the template

Activitvlnfo

Select field type

Key components that make the data model efficient: Summary

Tables and Subforms	The database utilizes tables and subforms to organize and store data related to cases. It is designed to minimize data redundancy and improve data integrity through normalization.
Relationships	The database uses reference forms to link related information. Referential integrity, or the ability to maintain data consistency through referencing, is a key feature of relational databases.Primary and Foreign keys like names, serial numbers, position codes and supervisors names etc aid this relationship
Flexibility	Architecture is flexible and can handle various types of data, making them suitable for a wide range of cases. The ability to customize forms and fields aid flexibility
User Roles	This role-based access control is a common feature in relational databases to restrict access and manage permissions.
Data Entry and Editing	Users can easily add, edit, and update records in the database.
Integrity constraints	The use of relevance and validation rules as unique and check constraints, ensuring that the data is accurate and consistent.
Import and Export	Which allows us connect to other platforms either through API integration or just the use interface that allows data export and import.

Common relational models in Humanitarian and development practice: More examples

Programme Monitoring and Evaluation (M&E) Tracking Development Data Model

Organization: This data model focuses on monitoring and evaluating humanitarian programs and projects. It includes data related to the goals, objectives, beneficiaries, project locations, and impact indicators.

Rationale: Humanitarian organizations need to assess the effectiveness of their interventions during crises. The M&E data model for humanitarian development helps collect and analyze data to ensure that aid programs are meeting their objectives and making a positive impact on affected populations.

ActivityInfo

Level 1: Identify the data collection forms and relationships

Example: Indicators Tracking with Global M&E database template

37

Best practices

Change Management During Digital Transformation in M&E Teams

Barriers to Digital Transformation	Enablers for Digital Transformation
Data Security Concerns	Internal Advocates
Data Confidentiality Concerns	Ease of Use
Reluctance to Leave Comfort Zone	Data Security Assurances
	Open Communication
	Support Teams

Best practices

Questions and answers between facilitators

- 1. Do I need different forms if I work with different partners on the field?
- 2. Do I need a different data collection form for each indicator in an M&E tracking data model?
- 3. In my needs assessment, I need to perform score calculation? How can I do it within activityInfo?

